在L1、L2级自动驾驶时代,车辆由驾驶员控制,汽车系统只起到辅助驾驶的作用。车辆在正常行驶的过程中,若发现前方出现障碍物,驾驶员会立刻操作系统,减速、刹车从而避免车辆发生撞击。在未来,L4、L5级自动驾驶时代,系统将完全代替人类完成所有驾驶操作。因此,在真实的物理世界中,就存在着这样一种攻击的可能性。攻击者对正在行驶的自动驾驶车辆的AI感知系统漏洞发起物理攻击,引发AI感知模型误判,成功“隐身”前方障碍物,诱导车辆发生撞击。2018年BlackHat Europe 大会上,百度安全研究团队现场展示了“如何让物体在深度学习系统的‘眼’中凭空消失”。在⾃动驾驶领域,针对深度学习模型漏洞进⾏物理攻击的可⾏性研究意义重大,因为直接关乎人类的生命安全。沿着这一研究思路,在9月26日即将举办的自动驾驶CTF线上赛中,主办方发起赛题挑战。通过3D仿真游戏模拟自动驾驶在物理世界的AI感知攻击,参赛战队可以在接近真实的自动驾驶场景中体验、应战。我们给这类赛题起了一个名字 ——“隐身衣”。